Questions

Q1.

Given that

$$f(x) = 2x + 3 + \frac{12}{x^2}, \quad x > 0$$

show that $\int_{-1}^{2\sqrt{2}} f(x)dx = 16 + 3\sqrt{2}$

(5)

(Total for question = 5 marks)

Basic Integration - Year 1 Core

Q2.

Find

$$\int \left(\frac{2}{3}x^3 - 6\sqrt{x} + 1\right) \mathrm{d}x$$

giving your answer in its simplest form.

(4)

(Total for question = 4 marks)

(3)

Q3.

(a) Given that *k* is a constant, find

$$\int \left(\frac{4}{x^3} + kx\right) \mathrm{d}x$$

simplifying your answer.

(b) Hence find the value of *k* such that

$$\int_{0.5}^{2} \left(\frac{4}{x^{3}} + kx\right) dx = 8$$
(3)

(Total for question = 6 marks)

Q4.

Given that *k* is a positive constant and
$$\int_{1}^{k} \left(\frac{5}{2\sqrt{x}} + 3\right) dx = 4$$

(a) show that
$$3k + 5\sqrt{k} - 12 = 0$$

(4)

(b) Hence, using algebra, find any values of k such that

$$\int_{1}^{k} \left(\frac{5}{2\sqrt{x}} + 3\right) \mathrm{d}x = 4 \tag{4}$$

(Total for question = 8 marks)

Q5.

A curve *C* has equation y = f(x)

Given that

- $f'(x) = 6x^2 + ax 23$ where *a* is a constant
- the y intercept of C is -12
- (x + 4) is a factor of f(x)

find, in simplest form, f(x)

(Total for question = 6 marks)

Q6.

Given that A is constant and

$$\int_{1}^{4} \left(3\sqrt{x} + A \right) \mathrm{d}x = 2A^{2}$$

show that there are exactly two possible values for *A*.

(5)

(Total for question = 5 marks)

Basic Integration - Year 1 Core

Q7.

Find

$$\int \frac{3x^4 - 4}{2x^3} \, \mathrm{d}x$$

writing your answer in simplest form.

(Total for question = 4 marks)

<u>Mark Scheme</u>

Q1.

Question	Scheme	Marks	AOs		
	$f(x) = 2x + 3 + 12x^{-2}$	B1	1.1b		
	Attempts to integrate	M1	1.1a		
	$\int \left(+2x + 3 + \frac{12}{x^2} \right) dx = x^2 + 3x - \frac{12}{x}$	A1	1.1b		
	$\left((2\sqrt{2})^2 + 3(2\sqrt{2}) - \frac{12(\sqrt{2})}{2 \times 2}\right) - (-8)$	М1	1.1b		
	$=16+3\sqrt{2}*$	A1*	1.1b		
		(5 marks)		
	Notes				
B1: Correct	t function with numerical powers				
M1: Allow	M1: Allow for raising power by one. $x^n \rightarrow x^{n+1}$				
A1: Correct three terms					
M1: Substitutes limits and rationalises denominator					
A1*: Com	A1*: Completely correct, no errors seen.				

Question	Scheme	Marks	AOs	
	$\int \left(\frac{2}{3}x^3 - 6\sqrt{x} + 1\right) \mathrm{d}x$			
	Attempts to integrate awarded for any correct power	M1	1.1a	
	$\int \left(\frac{2}{3}x^3 - 6\sqrt{x} + 1\right) dx = \frac{2}{3} \times \frac{x^4}{4} + \dots + x$	A1	1.1b	
	$= \dots - 6\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + \dots$ $= \frac{1}{6}x^{4} - 4x^{\frac{3}{2}} + x + c$	A1	1.1b	
	$= \frac{1}{6}x^4 - 4x^{\frac{3}{2}} + x + c$	A1	1.1b	
		(4	marks)	
	Notes			
 M1: Allow for raising power by one. xⁿ → xⁿ⁺¹ Award for any correct power including sight of 1x A1: Correct two 'non fractional power' terms (may be un-simplified at this stage) A1: Correct 'fractional power' term (may be un-simplified at this stage) A1: Completely correct, simplified and including constant of integration seen on one line. Simplification is expected for full marks. 				
Accept correct exact equivalent expressions such as $\frac{x^4}{6} - 4x\sqrt{x} + 1x^1 + c$				
Accept $\frac{x^4 - 24x^{\frac{3}{2}} + 6x}{6} + c$				
Remember to isw after a correct answer.				
Cond	Condone poor notation. Eg answer given as $\int \frac{1}{6}x^4 - 4x^{\frac{3}{2}} + x + c$			

Q3.

Question	Scheme	Marks	AOs
(a)	$x^n \rightarrow x^{n+1}$	M1	1.1b
	$\int \left(\frac{4}{x^3} + kx\right) dx = -\frac{2}{x^2} + \frac{1}{2}kx^2 + c$	A1 A1	1.1b 1.1b
		(3)	
(b)	$\left[-\frac{2}{x^2} + \frac{1}{2}kx^2\right]_{0.5}^2 = \left(-\frac{2}{2^2} + \frac{1}{2}k \times 4\right) - \left(-\frac{2}{(0.5)^2} + \frac{1}{2}k \times (0.5)^2\right) = 8$	M1	1.1b
	$7.5 + \frac{15}{8}k = 8 \Longrightarrow k = \dots$	dM1	1.1b
	$k = \frac{4}{15} \text{ oe}$	A1	1.1b
		(3)	
	(6 mark		

Notes Mark parts (a) and (b) as one (a) **M1:** For $x^n \to x^{n+1}$ for either x^{-3} or x^1 . This can be implied by the sight of either x^{-2} or x^2 . Condone "unprocessed" values here. Eg. x^{-3+1} and x^{1+1} A1: Either term correct (un simplified). Accept $4 \times \frac{x^{-2}}{-2}$ or $k \frac{x^2}{2}$ with the indices processed. A1: Correct (and simplified) with +c. Ignore spurious notation e.g. answer appearing with an $\int sign or with dx$ on the end. Accept $-\frac{2}{x^2} + \frac{1}{2}kx^2 + c$ or exact simplified equivalent such as $-2x^{-2} + k\frac{x^2}{2} + c$ (b) M1: For substituting both limits into their $-\frac{2}{x^2} + \frac{1}{2}kx^2$, subtracting either way around and setting equal to 8. Allow this when using a changed function. (so the M in part (a) may not have been awarded). Condone missing brackets. Take care here as substituting 2 into the original function gives the same result as the integrated function so you will have to consider both limits. **dM1:** For solving a **linear** equation in k. It is dependent upon the previous M only Don't be too concerned by the mechanics here. Allow for a linear equation in k leading to k =A1: $k = \frac{4}{15}$ or exact equivalent. Allow for $\frac{m}{n}$ where m and n are integers and $\frac{m}{n} = \frac{4}{15}$ Condone the recurring decimal 0.26 but not 0.266 or 0.267 Please remember to isw after a correct answer

Q4.

Question	Scheme	Marks	AOs	
(a)	$x^n \rightarrow x^{n+1}$	M1	1.1b	
	$\int \left(\frac{5}{2\sqrt{x}} + 3\right) dx = 5\sqrt{x} + 3x$	A1	1.1b	
	$\left[5\sqrt{x} + 3x\right]_{1}^{k} = 4 \Longrightarrow 5\sqrt{k} + 3k - 8 = 4$	dM1	1.1b	
	$3k + 5\sqrt{k} - 12 = 0 *$	A1*	2.1	
		(4)		
(b)	$3k + 5\sqrt{k} - 12 = 0 \Longrightarrow \left(3\sqrt{k} - 4\right)\left(\sqrt{k} + 3\right) = 0$	M1	3.1a	
	$\sqrt{k} = \frac{4}{3}, (-3)$	A1	1.1b	
	$\sqrt{k} = \Rightarrow k =$ oe	dM1	1.1b	
	$k = \frac{16}{9}, \aleph$	A1	2.3	
		(4)		
	(8 marks			

Notes

M1: For $x^n \to x^{n+1}$ on correct indices. This can be implied by the sight of either $x^{\frac{1}{2}}$ or x

- A1: $5\sqrt{x} + 3x$ or $5x^{\frac{1}{2}} + 3x$ but may be unsimplified. Also allow with +c and condone any spurious notation.
- dM1: Uses both limits, subtracts, and sets equal to 4. They cannot proceed to the given answer without a line of working showing this.
- A1*: Fully correct proof with no errors (bracketing or otherwise) leading to given answer.

(b)

(a)

M1: For a correct method of solving. This could be as the scheme, treating as a quadratic in \sqrt{k} and using allowable method to solve including factorisation, formula etc.

Allow values for \sqrt{k} to be just written down, e.g. allow $\sqrt{k} = \pm \frac{4}{3}$, (±3)

Alternatively score for rearranging to $5\sqrt{k} = 12 - 3k$ and then squaring to get $...k = (12 - 3k)^2$

A1: $\sqrt{k} = \frac{4}{3}, (-3)$

Or in the alt method it is for reaching a correct 3TQ equation $9k^2 - 97k + 144 = 0$

- dM1: For solving to find at least one value for k. It is dependent upon the first M mark. In the main method it is scored for squaring their value(s) of √k In the alternative scored for solving their 3TQ by an appropriate method
- A1: Full and rigorous method leading to $k = \frac{16}{9}$ only. The 9 must be rejected.

Q5.

Via firstly integrating

Question	Scheme	Marks	AOs
	$f'(x) = 6x^2 + ax - 23 \Longrightarrow f(x) = 2x^3 + \frac{1}{2}ax^2 - 23x + c$	M1	1.1b
	$1(x) = 0x + ux = 23 \Rightarrow 1(x) = 2x + \frac{1}{2}ux = \frac{1}{2}ux + \frac{1}{2}ux + \frac{1}{2}ux = \frac{1}{2}ux + \frac{1}{2}ux = \frac{1}{2$	A1	1.1b
	"c"=-12	B1	2.2a
	$f(-4) = 0 \Longrightarrow 2 \times (-4)^3 + \frac{1}{2}a(-4)^2 - 23(-4) - 12 = 0$	dM1	3.1a
	a = (6)	dM1	1.1b
	$(f(x) =) 2x^3 + 3x^2 - 23x - 12$ Or Equivalent e.g. $(f(x) =)(x+4)(2x^2 - 5x - 3) (f(x) =)(x+4)(2x+1)(x-3)$	Alcso	2.1
		(6)	
		•	(6 marks)

Notes:

M1: Integrates f'(x) with two correct indices. There is no requirement for the + c

- A1: Fully correct integration (may be unsimplified). The + c must be seen (or implied by the -12)
- B1: Deduces that the constant term is -12
- dM1: Dependent upon having done some integration. It is for setting up a linear equation in *a* by using f(-4) = 0May also see long division attempted for this mark. Need to see a complete method leading to a remainder in terms of *a* which is then set = 0.

For reference, the quotient is $2x^2 + \left(\frac{a}{2} - 8\right)x + 9 - 2a$ and the remainder is 8a - 48

May also use $(x + 4)(px^2 + qx + r) = 2x^3 + \frac{1}{2}ax^2 - 23x - 12$ and compare coefficients to find p, q and r and

hence a. Allow this mark if they solve for p, q and r

Note that some candidates use 2f(x) which is acceptable and gives the same result if executed correctly. dM1: Solves the linear equation in *a* or uses *p*, *q* and *r* to find *a*.

It is dependent upon having attempted some integration and used $f(\pm 4) = 0$ or long division/comparing coefficients with (x + 4) as a factor.

Alcso: For $(f(x) =)2x^3 + 3x^2 - 23x - 12$ oe. Note that "f(x) =" does not need to be seen and ignore any "= 0"

Question	Scheme	Marks	AOs
Alt	$\mathbf{f}(x) = (x+4)(Ax^2 + Bx + C)$	M1 A1	1.1b 1.1b
	$f(x) = Ax^{3} + (4A + B)x^{2} + (4B + C)x + 4C \Rightarrow C = -3$	B1	2.2a
	$f'(x) = 3Ax^2 + 2(4A + B)x + (4B + C)$ and $f'(x) = 6x^2 + ax - 23$ $\Rightarrow A =$	dM1	3.1a
	Full method to get A, B and C	dM1	1.1b
	$f(x) = (x+4)(2x^2-5x-3)$	A1cso	2.1
		(6)	
			(6 marks)

Via firstly using factor

Notes:

M1: Uses the fact that f(x) is a cubic expression with a factor of (x + 4)**A1**: For $f(x) = (x + 4)(Ax^2 + Bx + C)$ **B1**: Deduces that C = -3 dM1: Attempts to differentiate either by product rule or via multiplication and compares to f'(x) = 6x² + ax - 23 to find A.
dM1: Full method to get A, B and C
Alcso: f(x) = (x + 4)(2x² - 5x - 3) or f(x) = (x + 4)(2x + 1)(x - 3)

Q6.

Ques	tion	Scheme	Marks	AOs	
	$\int (3x^{0.5} + A) \mathrm{d}x = 2x^{1.5} + Ax(+c)$		M1 A1	3.1a 1.1b	
	Uses limits and sets = $2A^2$ =	$(2 \times 8 + 4A) - (2 \times 1 + A) = 2A^2$	M1	1.1b	
	Sets up quadratic and attempts to solve	Sets up quadratic and attempts $b^2 - 4ac$	M1	1.1b	
	$\Rightarrow A = -2, \frac{7}{2} \text{ and states that}$ there are two roots	States $b^2 - 4ac = 121 > 0$ and hence there are two roots	A1	2.4	
	(5 marks)				
Notes	:				
M1:	Integrates the given function and a	chieves an answer of the form $kx^{1.5} + Ax$	(+c) when	e k is	
	a non- zero constant				
A1:	Correct answer but may not be sim	plified			
M1:	Substitutes in limits and subtracts. This can only be scored if $\int A dx = Ax$ and not $\frac{A^2}{2}$				
M1:	Sets up quadratic equation in A and either attempts to solve or attempts $b^2 - 4ac$				
A1:	Either $A = -2, \frac{7}{2}$ and states that there are two roots				
	Or states $b^2 - 4ac = 121 > 0$ and hence there are two roots				

Q7.

Question	Scheme	Marks	AOs
	$\int \frac{3x^4 - 4}{2x^3} \mathrm{d}x = \int \frac{3}{2}x - 2x^{-3} \mathrm{d}x$	M1 A1	1.1b 1.1b
	$=\frac{3}{2} \times \frac{x^{2}}{2} - 2 \times \frac{x^{-2}}{-2} (+c)$	dM1	3.1a
	$=\frac{3}{4}x^{2}+\frac{1}{x^{2}}+c$ o.e	A1	1.1b
		(4)	
		(4 n	narks)
Notes:			
(i) M1: Attempts to divide to form a sum of terms. Implied by two terms with one correct index. $\int \frac{3x^4}{2x^3} - \frac{4}{2x^3} dx$ scores this mark.			
A1: $\int \frac{3}{2}x - 2x^{-3} dx$ o.e such as $\frac{1}{2} \int (3x - 4x^{-3}) dx$. The indices must have been processed on both terms. Condone spurious notation or lack of the integral sign for this mark.			
dM1: For the full strategy to integrate the expression. It requires two terms with one correct index. Look for $=ax^{p} + bx^{q}$ where $p = 2$ or $q = -2$			
A1: Correct answer $\frac{3}{4}x^2 + \frac{1}{x^2} + c$ o.e. such as $\frac{3}{4}x^2 + x^{-2} + c$			