Questions

Q1.

Given that

$$
\mathrm{f}(x)=2 x+3+\frac{12}{x^{2}}, x>0
$$

show that $\int_{1}^{2 \sqrt{2}} f(x) d x=16+3 \sqrt{2}$

Q2.

Find

$$
\int\left(\frac{2}{3} x^{3}-6 \sqrt{x}+1\right) d x
$$

giving your answer in its simplest form.

Q3.
(a) Given that k is a constant, find

$$
\int\left(\frac{4}{x^{3}}+k x\right) \mathrm{d} x
$$

simplifying your answer.
(b) Hence find the value of k such that

$$
\begin{equation*}
\int_{0.5}^{2}\left(\frac{4}{x^{3}}+k x\right) \mathrm{d} x=8 \tag{3}
\end{equation*}
$$

Q4.

Given that k is a positive constant and $\int_{1}^{k}\left(\frac{5}{2 \sqrt{x}}+3\right) \mathrm{d} x=4$
(a) show that $3 k+5 \sqrt{k}-12=0$
(b) Hence, using algebra, find any values of k such that

$$
\begin{equation*}
\int_{1}^{k}\left(\frac{5}{2 \sqrt{x}}+3\right) \mathrm{d} x=4 \tag{4}
\end{equation*}
$$

Q5.

A curve C has equation $y=f(x)$
Given that

- $f^{\prime}(x)=6 x^{2}+a x-23$ where a is a constant
- the y intercept of C is -12
- $(x+4)$ is a factor of $f(x)$
find, in simplest form, $\mathrm{f}(x)$

Q6.

Given that A is constant and

$$
\int_{1}^{4}(3 \sqrt{x}+A) \mathrm{d} x=2 A^{2}
$$

show that there are exactly two possible values for A.

Q7.

Find

$$
\int \frac{3 x^{4}-4}{2 x^{3}} \mathrm{~d} x
$$

writing your answer in simplest form.

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
	$\mathrm{f}(x)=2 x+3+12 x^{-2}$	B1	1.1 b
	Attempts to integrate	M1	1.1 a
	$\int\left(+2 x+3+\frac{12}{x^{2}}\right) \mathrm{d} x=x^{2}+3 x-\frac{12}{x}$	A1	1.1 b
	$\left((2 \sqrt{2})^{2}+3(2 \sqrt{2})-\frac{12(\sqrt{2})}{2 \times 2}\right)-(-8)$	M1	1.1 b
	$=16+3 \sqrt{2} *$	A1*	1.1 b
\quad Notes			

Q2.

Question	Scheme	Marks	AOs
	$\int\left(\frac{2}{3} x^{3}-6 \sqrt{x}+1\right) \mathrm{d} x$		
	Attempts to integrate awarded for any correct power	M1	1.1a
	$\int\left(\frac{2}{3} x^{3}-6 \sqrt{x}+1\right) \mathrm{d} x=\frac{2}{3} \times \frac{x^{4}}{4}+\ldots+x$	A1	1.1b
	$=\ldots-6 \frac{x^{\frac{3}{2}}}{3 / 2}+\ldots$.	A1	1.1b
	$=\frac{1}{6} x^{4}-4 x^{\frac{1}{2}}+x+c$	A1	1.1b
(4 marks)			
Notes M1: Allow for raising power by one. $x^{n} \rightarrow x^{n+1}$ Award for any correct power including sight of $1 x$ A1: Correct two 'non fractional power' terms (may be un-simplified at this stage) A1: Correct 'fractional power' term (may be un-simplified at this stage) A1: Completely correct, simplified and including constant of integration seen on one line. Simplification is expected for full marks. Accept correct exact equivalent expressions such as $\frac{x^{4}}{6}-4 x \sqrt{x}+1 x^{1}+c$ Accept $\quad \frac{x^{4}-24 x^{\frac{3}{2}}+6 x}{6}+c$ Remember to isw after a correct answer. Condone poor notation. Eg answer given as $\int \frac{1}{6} x^{4}-4 x^{\frac{3}{2}}+x+c$			

Q3.

Question	Scheme	Marks	AOs
(a)	$x^{n} \rightarrow x^{n+1}$	M1	1.1 b
	$\int\left(\frac{4}{x^{3}}+k x\right) \mathrm{d} x=-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}+c$	A1	1.1 b
A1	1.1 b		

Notes

Mark parts (a) and (b) as one
(a)

M1: For $x^{n} \rightarrow x^{n+1}$ for either x^{-3} or x^{1}. This can be implied by the sight of either x^{-2} or x^{2}. Condone "unprocessed" values here. Eg. x^{-3+1} and x^{1+1}
A1: Either term correct (un simplified).

$$
\text { Accept } 4 \times \frac{x^{-2}}{-2} \text { or } k \frac{x^{2}}{2} \text { with the indices processed. }
$$

A1: Correct (and simplified) with $+c$.
Ignore spurious notation e.g. answer appearing with an $\int \operatorname{sign}$ or with $\mathrm{d} x$ on the end.

$$
\text { Accept }-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}+c \text { or exact simplified equivalent such as }-2 x^{-2}+k \frac{x^{2}}{2}+c
$$

(b)

M1: For substituting both limits into their $-\frac{2}{x^{2}}+\frac{1}{2} k x^{2}$, subtracting either way around and setting equal to 8 . Allow this when using a changed function. (so the M in part (a) may not have been awarded). Condone missing brackets. Take care here as substituting 2 into the original function gives the same result as the integrated function so you will have to consider both limits.
dM1: For solving a linear equation in k. It is dependent upon the previous M only
Don't be too concerned by the mechanics here. Allow for a linear equation in k leading to $k=$
A1: $k=\frac{4}{15}$ or exact equivalent. Allow for $\frac{m}{n}$ where m and n are integers and $\frac{m}{n}=\frac{4}{15}$
Condone the recurring decimal 0.26 but not 0.266 or 0.267
Please remember to isw after a correct answer

Q4.

Question	Scheme	Marks	AOs
(a)	$x^{n} \rightarrow x^{n+1}$	M1	1.1b
	$\int\left(\frac{5}{2 \sqrt{x}}+3\right) \mathrm{d} x=5 \sqrt{x}+3 x$	A1	1.1b
	$[5 \sqrt{x}+3 x]_{1}^{k}=4 \Rightarrow 5 \sqrt{k}+3 k-8=4$	dM1	1.1b
	$3 k+5 \sqrt{k}-12=0$ *	A1*	2.1
		(4)	
(b)	$3 k+5 \sqrt{k}-12=0 \Rightarrow(3 \sqrt{k}-4)(\sqrt{k}+3)=0$	M1	3.1a
	$\sqrt{k}=\frac{4}{3},(-3)$	A1	1.1b
	$\sqrt{k}=\ldots \Rightarrow k=\ldots$ oe	dM1	1.1b
	$k=\frac{16}{9}$, $久$	A1	2.3
		(4)	
(8 marks)			

Notes

(a)

M1: For $x^{n} \rightarrow x^{n+1}$ on correct indices. This can be implied by the sight of either $x^{\frac{1}{2}}$ or x
A1: $\quad 5 \sqrt{x}+3 x$ or $5 x^{\frac{1}{2}}+3 x$ but may be unsimplified. Also allow with $+c$ and condone any spurious notation.
dM1: Uses both limits, subtracts, and sets equal to 4 . They cannot proceed to the given answer without a line of working showing this.

A1*: Fully correct proof with no errors (bracketing or otherwise) leading to given answer.
(b)

M1: For a correct method of solving. This could be as the scheme, treating as a quadratic in \sqrt{k} and using allowable method to solve including factorisation, formula etc.
Allow values for \sqrt{k} to be just written down, e.g. allow $\sqrt{k}= \pm \frac{4}{3},(\pm 3)$
Alternatively score for rearranging to $5 \sqrt{k}=12-3 k$ and then squaring to get
$\ldots k=(12-3 k)^{2}$

A1: $\quad \sqrt{k}=\frac{4}{3},(-3)$
Or in the alt method it is for reaching a correct 3TQ equation $9 k^{2}-97 k+144=0$
dM1: For solving to find at least one value for k. It is dependent upon the first M mark.
In the main method it is scored for squaring their value(s) of \sqrt{k}
In the alternative scored for solving their 3TQ by an appropriate method
A1: Full and rigorous method leading to $k=\frac{16}{9}$ only. The 9 must be rejected.

Q5.

Via firstly integrating

Question	Scheme	Marks	AOs
	$\mathrm{f}^{\prime}(x)=6 x^{2}+a x-23 \Rightarrow \mathrm{f}(x)=2 x^{3}+\frac{1}{2} a x^{2}-23 x+c$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$" c$ " $=-12$	B1	2.2a
	$\mathrm{f}(-4)=0 \Rightarrow 2 \times(-4)^{3}+\frac{1}{2} a(-4)^{2}-23(-4)-12=0$	dM1	3.1a
	$a=\ldots$ (6)	dM1	1.1b
	$(\mathrm{f}(x)=) 2 x^{3}+3 x^{2}-23 x-12$ Or Equivalent e.g. $(\mathrm{f}(x)=)(x+4)\left(2 x^{2}-5 x-3\right) \quad(\mathrm{f}(x)=)(x+4)(2 x+1)(x-3)$	Alcso	2.1
		(6)	
(6 marks)			

Notes:

M1: Integrates $\mathrm{f}^{\prime}(x)$ with two correct indices. There is no requirement for the $+c$
Al: Fully correct integration (may be unsimplified). The $+c$ must be seen (or implied by the -12)
B1: Deduces that the constant term is -12
dMI : Dependent upon having done some integration. It is for setting up a linear equation in a by using $\mathrm{f}(-4)=0$
May also see long division attempted for this mark. Need to see a complete method leading to a remainder in terms of a which is then set $=0$.
For reference, the quotient is $2 x^{2}+\left(\frac{a}{2}-8\right) x+9-2 a$ and the remainder is $8 a-48$
May also use $(x+4)\left(p x^{2}+q x+r\right)=2 x^{3}+\frac{1}{2} a x^{2}-23 x-12$ and compare coefficients to find p, q and r and hence a. Allow this mark if they solve for p, q and r
Note that some candidates use $2 f(x)$ which is acceptable and gives the same result if executed correctly.
dMI : Solves the linear equation in a or uses p, q and r to find a.
It is dependent upon having attempted some integration and used $f(\pm 4)=0$ or long division/comparing coefficients with $(x+4)$ as a factor.
Alcso: For $(\mathrm{f}(x)=) 2 x^{3}+3 x^{2}-23 x-12$ oe. Note that " $\mathrm{f}(x)=$ " does not need to be seen and ignore any " $=0$ "

Via firstly using factor

Question	Scheme	Marks	AOs
Alt	$\mathrm{f}(x)=(x+4)\left(A x^{2}+B x+C\right)$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$\mathrm{f}(x)=A x^{3}+(4 A+B) x^{2}+(4 B+C) x+4 C \Rightarrow C=-3$	B1	2.2a
	$\begin{gathered} \mathrm{f}^{\prime}(x)=3 A x^{2}+2(4 A+B) x+(4 B+C) \text { and } \mathrm{f}^{\prime}(x)=6 x^{2}+a x-23 \\ \Rightarrow A=\ldots \end{gathered}$	dM1	3.1a
	Full method to get A, B and C	dM1	1.1b
	$\mathrm{f}(x)=(x+4)\left(2 x^{2}-5 x-3\right)$	A1cso	2.1
		(6)	
(6 marks)			

Notes:

M1: Uses the fact that $\mathrm{f}(x)$ is a cubic expression with a factor of $(x+4)$
A1: For $\mathrm{f}(x)=(x+4)\left(A x^{2}+B x+C\right)$
B1: Deduces that $C=-3$
$\mathrm{dM1}:$ Attempts to differentiate either by product rule or via multiplication and compares to $\mathrm{f}^{\prime}(x)=6 x^{2}+a x-23$ to find A.
dM1: Full method to get A, B and C
Alcso: $\mathrm{f}(x)=(x+4)\left(2 x^{2}-5 x-3\right)$ or $\mathrm{f}(x)=(x+4)(2 x+1)(x-3)$

Q6.

Question		scheme	Marks	AOs
	$\int\left(3 x^{0.5}+A\right) \mathrm{d} x=2 x^{1.5}+A x(+c)$		$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$
	Uses limits and sets $=2 A^{2} \Rightarrow(2 \times 8+4 A)-(2 \times 1+A)=2 A^{2}$		M1	1.1b
	Sets up quadratic and attempts to solve	Sets up quadratic and attempts $b^{2}-4 a c$	M1	1.1b
	$\Rightarrow A=-2, \frac{7}{2}$ and states that there are two roots	States $b^{2}-4 a c=121>0$ and hence there are two roots	A1	2.4
(5 marks)				
Notes:				
M1: Integrates the given function and achieves an answer of the form $k x^{1.5}+A x(+c)$ where k is a non- zero constant				
A1: Correct answer but may not be simplified				
M1: Substitutes in limits and subtracts. This can only be scored if $\int A \mathrm{~d} x=A x$ and not $\frac{A^{2}}{2}$				
M1: Sets up quadratic equation in A and either attempts to solve or attempts $b^{2}-4 a c$ A1: Either $A=-2, \frac{7}{2}$ and states that there are two roots Or states $b^{2}-4 a c=121>0$ and hence there are two roots				

Q7.

Question	Scheme	Marks	AOs
	$\int \frac{3 x^{4}-4}{2 x^{3}} \mathrm{~d} x=\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
	$=\frac{3}{2} \times \frac{x^{2}}{2}-2 \times \frac{x^{-2}}{-2} \quad(+c)$	dM1	3.1a
	$=\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c \quad$ o.e	A1	1.1b
		(4)	
(4 marks)			
Notes:			

(i)

M1: Attempts to divide to form a sum of terms. Implied by two terms with one correct index. $\int \frac{3 x^{4}}{2 x^{3}}-\frac{4}{2 x^{3}} \mathrm{~d} x$ scores this mark.

A1: $\int \frac{3}{2} x-2 x^{-3} \mathrm{~d} x$ o.e such as $\frac{1}{2} \int\left(3 x-4 x^{-3}\right) \mathrm{d} x$. The indices must have been processed on both terms. Condone spurious notation or lack of the integral sign for this mark.
dM1: For the full strategy to integrate the expression. It requires two terms with one correct index.
Look for $=a x^{p}+b x^{q}$ where $p=2$ or $q=-2$
A1: Correct answer $\frac{3}{4} x^{2}+\frac{1}{x^{2}}+c$ o.e. such as $\frac{3}{4} x^{2}+x^{-2}+c$

